Z/p metabelian birational p-adic section conjecture for varieties

نویسنده

  • Florian Pop
چکیده

In this manuscript we generalize the Z/p metabelian birational p-adic Section Conjecture for curves, as introduced and proved in Pop [P2], to all complete smooth varieties. As a consequence one gets a minimalistic p-adic analog of the famous Artin–Schreier theorem on the Galois characterization of the orderings of fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE BIRATIONAL p-ADIC SECTION CONJECTURE

In this manuscript we introduce/prove a Z/p meta-abelian form of the birational p-adic Section Conjecture for curves. This is a much stronger result than the usual p-adic birational Section Conjecture for curves, and makes an effective p-adic Section Conjecture for curves quite plausible.

متن کامل

Pro-p hom-form of the birational anabelian conjecture over sub-p-adic fields

We prove a Hom-form of the pro-p birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.

متن کامل

The pro-p Hom-form of the birational anabelian conjecture

We prove a pro-p Hom-form of the birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.

متن کامل

p-ADIC DISTANCE FROM TORSION POINTS OF SEMI-ABELIAN VARIETIES

Tate and Voloch have conjectured that the p-adic distance from torsion points of semi-abelian varieties over Cp to subvarieties may be uniformly bounded. We prove this conjecture for prime-to-p torsion points on semi-abelian varieties over Q p using methods of algebraic model theory. Let Cp denote the completion of the algebraic closure of the p-adic numbers with p-adic valuation v normalized t...

متن کامل

Cohomology Theory in Birational Geometry

This is a continuation of [10], where it was shown that K-equivalent complex projective manifolds have the same Betti numbers by using the theory of p-adic integrals and Deligne’s solution to the Weil conjecture. The aim of this note is to show that with a little more book-keeping work, namely by applying Faltings’ p-adic Hodge Theory, our p-adic method also leads to the equivalence of Hodge nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014